University of Strathclyde website
Digital Collections - University of Strathclyde Library
Search Results Previous Searches E-Shelf
Login End Session
Guest
Search 'System Number= 000004936' in 'General Silo' Collection [ Sorted by: Name/Title ] Refine search
Table view Full view
Record 1 of 1 1
Add to E-Shelf
e-item icon
Link(s)
PDF of thesis T14635 PDF of thesis T14635 - (4 M)
Title Protein encapsulated gold nanoclusters for biological applications / by Ben A. Russell.
Name Russell, Ben A. .
Abstract Sensing and imaging at the nanoscale using fluorescence based techniques has advanced the fields of biology and medical science. However there remain shortfalls with currently used fluorescent probes. One such problem is the lack of biologically inert fluorophores which emit in the red regime of the visible spectrum with good brightness.
Abstract A class of newly developed fluorophores which have shown promise in fitting the required criteria are protein encapsulated gold nanoclusters (AuNCs). They have been shown to be non-toxic, red emitting, long-lived fluorophores however their low brightness has hindered their widespread use. The complexity of protein encapsulated AuNCs' fluorescence mechanism also remains poorly understood.
Abstract Fluorescence based techniques, Molecular Dynamics simulations and physicochemical characterisation techniques have been employed to uncover important information critical to improving the fluorescence characteristics of protein encapsulated AuNCs. The AuNCs nucleation site within Human Serum Albumin (HSA) has been discovered which will allow for the intelligent modification of the fluorophores with the aim of improving their fluorescence intensity and low quantum yield.
Abstract The effects of AuNCs on natural protein function have also been studied; indicating that the major drug binding site of HSA is blocked upon AuNCs synthesis. Further studies of the physicochemical changes in HSA upon AuNCs synthesis uncovered that the protein adopts a dimer state which could lead to complications when using as an in vivo sensor. Lysozyme encapsulated AuNCs displayed similar behaviour, forming dimers after AuNCs synthesis.
Abstract Interestingly, the isoelectric point of this fluorophore was found to be the same as HSA encapsulated AuNCs, suggesting that protein encapsulated AuNCs share common features. Lysozyme encapsulated AuNCs displayed similar adsorption properties as native lysozyme; suggesting that in the future, unmodified AuNCs could be used to observe the formation of lysozyme fibrils which are a major bio-marker for currently incurable brain diseases such as Alzheimer’s and Parkinson’s.
Publication date 2017.
Name University of Strathclyde. Department of Physics. Photophysics Research Group.
Name University of Strathclyde. Department of Physics.
Thesis note Thesis Ph. D. University of Strathclyde 2017 T14635

Powered by Digitool Contact us Electronic Library Services Library Home