University of Strathclyde website
Digital Collections - University of Strathclyde Library
Search Results Previous Searches E-Shelf
Login End Session
Guest
Search 'System Number= 000004977' in 'General Silo' Collection [ Sorted by: Name/Title ] Refine search
Table view Full view
Record 1 of 1 1
Add to E-Shelf
e-item icon
Link(s)
PDF of thesis T14702 PDF of thesis T14702 - (8 M)
Title Control of Shigella sonnei and adhesive invasive Escherichia coli infections with a natural product which inhibits the bacterial oxidoreductase DsbA / by Zainulabedeen Reda Mirza.
Name Mirza, Zainulabedeen Reda. .
Abstract Geraniol has been shown to target the major virulence regulator, DsbA, which is vital for Shigella's survival in the reducing host cell cytosol. Geraniol and geranylxvacetate inhibited DsbA function in vitro; wild type DsbA efficiently reduced fluorescently labelled Di-E-GSSG whereas a mutant protein, DsbA33G, was less potent in this in vitro assay. By supplementing acidic and nutrient-poor medium with geraniol the growth of S. sonnei and AIEC strains was severely inhibited. Geraniol was effective in protecting of Galleria. mellonella larva from S. sonnei and AIEC infection. The Galleria mellonella larvae were highly tolerant to geraniol - indicating the great potential of geraniol for future in vivo and clinical studies. In light of previous reports that geraniol synergistically works with antibiotics and induces IL-10 from macrophages, it was concluded that geraniol holds great potential in treating Shigella and AIEC infections.
Abstract Many Gram-negative bacterial pathogens such as Shigella and adhesive invasive Escherichia coli (AIEC) cause infections characteristic of hyperinflammation. These infections require antimicrobial therapy. However, due to the widespread emergence of multiple drug-resistant strains, alternative strategies must be sought to combating infectious diseases. It has been shown that natural compounds such as propolin D are able to control Shigella growth inside host cells. Geraniol is another natural product which has a chemical structure similar to the side chain of propolin D, which possesses properties potentially useful for antimicrobial therapy. qPCR analysis revealed that propolin D caused extensive bacterial envelopE stress, as indicated by a changed expression of key bacterial genes involved in stress responses. Propolin D also enhanced the autophagy activity of the host cells; the intracellular growth of S. sonnei was significantly reduced in wild type HEK293 cells but not changed in ATG5 knockout cells. Propolin D was unable to enhance septin cage as intracellular S. sonnei formed actin tails in the presence of propolin D; septin cage would restrict formation of actin tails.
Publication date 2017
Name University of Strathclyde. Strathclyde Institute of Pharmacy and Biomedical Sciences.
Thesis note Thesis PhD University of Strathclyde 2017 T14702
System Number 000004977

Powered by Digitool Contact us Electronic Library Services Library Home