University of Strathclyde website
Digital Collections - University of Strathclyde Library
Search Results Previous Searches E-Shelf
Login End Session
Guest
Search 'System Number= 000005343' in 'General Silo' Collection [ Sorted by: Name/Title ] Refine search
Table view Full view
Record 1 of 1 1
Add to E-Shelf
e-item icon
Link(s)
PDF of thesis T14965 PDF of thesis T14965 - (8 M)
Title The development of organic peroxide mediated oxidations / Stuart Cameron Davidson.
Name Davidson, Stuart Cameron. .
Abstract Chapter 1 describes a novel metal-free method for the one-pot anti-dihydroxylation of alkenes to form diols using malonoyl peroxide 13. The reaction conditions were optimised and the scope of the optimal conditions were examined with a variety of stilbene, styrene and indene derivatives to give the corresponding anti-diols in good to excellent yields and selectivities. Following this, a variety of mechanistic investigations were undertaken, revealing key intermediates and allowing the proposal of a mechanism. Scheme 1-1. Optimised conditions of anti-dihydroxylation discussed in Chapter 1. [see thesis for graphic representation]
Abstract Chapter 2 demonstrates the development of an organocatalytic sulfoxidation using diketone catalysts. Following a significant optimisation process, the scope of sulfoxidation, showing a wide tolerance of functional groups, was explored. Mechanistic investigation was also undertaken, exploring the intermediates isolated from the procedure and an exploration of the reactivity using tool compounds. The stoichiometric process was also investigated to generate kinetics and a postulated transition state. Scheme 1-2. Optimised conditions of organocatalytic sulfoxidation discussed in Chapter 2. [see thesis for graphic representation]
Abstract Chapter 3 contains the experimental procedures and analytical data generated for all the compounds synthesised within this thesis.
Abstract This thesis describes the development of two novel metal-free oxidations processes: a method to selective synthesis anti-diols directly from commercially available alkene starting materials and an organocatalytic sulfoxidation procedure using diketones as catalysts.
Publication date 2018
Name Tomkinson, Nicholas C. O., degree supervisor.
Name University of Strathclyde. Department of Pure and Applied Chemistry.
Thesis note Thesis PhD University of Strathclyde 2018 T14965
System Number 000005343

Powered by Digitool Contact us Electronic Library Services Library Home