University of Strathclyde website
Digital Collections - University of Strathclyde Library
Search Results Previous Searches E-Shelf
Login End Session
Guest
Search 'System Number= 000005460' in 'General Silo' Collection [ Sorted by: Name/Title ] Refine search
Table view Full view
Record 1 of 1 1
Add to E-Shelf
e-item icon
Link(s)
PDF of thesis T15025 PDF of thesis T15025 - (15 M)
Title Mooring lines analysis and design for wave energy converters / Gianmaria Giannini.
Name Giannini, Gianmaria. .
Abstract Soon, wave energy converters will be anchored in several offshore locations for extended periods of time, where high wave energy exist. These devices moored in such areas experience continuous dynamic loads exerted mainly by colliding waves. Therefore, their mooring system is a fundamental component, which inuences overall performance characteristics through its dynamic behaviour.
Abstract The mooring component of wave power devices has been typically analysed and designed by using a simplified static and quasistatic based approach and thus independent from the design of the oating structure dynamics. Given the peculiarities of mooring system design and analysis for wave energy devices, no particular available tools are suitable for analysing and design the mooring component as an integral active part of the entire moored system. All commercial software and codes available are in fact developed by having in mind different mooring requirements.
Abstract For showing on how this can be applied, a particular focus on an Earth-reacting type of wave energy devices is made. Thus, a numerical code capable of analysing the dynamics, and predict performances of specific single tethered Earth-reacting wave energy converters, was developed. Through this code moored devices of any shape under regular or irregular seas' loads can be analysed.
Abstract Both frequency-domain and time-domain mathematical formulations of the system considered are resolved by the proposed method. By using the comparison of numerical predictions with experimental data, the numerical code was validated for the specific cases of both, a half submerged and a fully submerged, spherical oaters. The accuracy of the proposed method was quantified.
Abstract Results showed that the numerical method proposed is accurate, computationally efficient and well validated by the extensive experimental data, which was beside acquired during this project. Following the validation of the numerical tool, this last was used in two case studies. The outcome of these studies indicated that by using the proposed method, the trade-off between oater's immersion depth and mooring load peaks could be examined so that the optimal system design can be identified.
Abstract The main advantage of the developed tool, compared to existing codes, is that this is tailored to the specific case of analysis and design for Earth-reacting wave energy converters. The new generic methodology proposed showed to be useful and suitable for analysing and design wave energy converters by including the mooring system as an integral component.
Publication date 2018.
Name Day, A, degree supervisor.
Name Clelland, David, degree supervisor.
Name Srinil, Narakorn, degree supervisor.
Name University of Strathclyde. Department of Naval Architecture, Ocean and Marine Engineering.
Thesis note Thesis Ph. D. University of Strathclyde 2018 T15025

Powered by Digitool Contact us Electronic Library Services Library Home