University of Strathclyde website
Digital Collections - University of Strathclyde Library
Search Results Previous Searches E-Shelf
Login End Session
Guest
Search 'System Number= 000005613' in 'General Silo' Collection [ Sorted by: Name/Title ] Refine search
Table view Full view
Record 1 of 1 1
Add to E-Shelf
e-item icon
Link(s)
PDF of thesis T15179 PDF of thesis T15179 - (38 M)
Title A multilevel approach for approximating the inverse Hessian in four-dimensional variational data assimilation / Kirsty Lynne Brown.
Name Brown, Kirsty Lynne. .
Abstract Data assimilation methods are routinely employed in many scientific and technological fields. The inverse Hessian, and inverse square root Hessian, are of importance in various aspects of these procedures. The Hessian vector product is usually defined in the context of geophysical and engineering applications by the sequential solution of a tangent linear and adjoint problem. However, there are no readily available routines for computing the inverse Hessian, and inverse square root Hessian, vector products.
Abstract It is generally necessary, when solving high-dimensional data assimilation problems, to operate in a matrix-free environment. A suitable method for generating a compact representation of the inverse Hessian, and inverse square root Hessian, is required in such cases.
Abstract A multilevel eigenvalue decomposition algorithm for constructing a limited-memory approximation to the inverse (and inverse square root) of any given symmetric positive definite matrix with eigenvalues clustered around unity is presented in this thesis. This algorithm is applied to the Hessian in the framework of incremental four-dimensional variational data assimilation (4D-Var), with the standard control variable transform implemented, in order to construct an approximation to the inverse Hessian. A novel decomposition of the Hessian as the sum of a set of local Hessians is introduced in this setting.
Abstract Two practical variants of the multilevel eigenvalue decomposition algorithm for constructing a limited-memory approximation to the inverse (and inverse square root) of this Hessian are also presented. The accuracy of approximations to the inverse Hessian generated by applying the three algorithms proposed is investigated. The application considered in this thesis focuses on preconditioning the system of linear equations in the inner step of a Gauss-Newton procedure in incremental 4D-Var with an approximation to the inverse Hessian generated using the three algorithms proposed.
Publication date 2018.
Name Ramage, Alison, degree supervisor.
Name Gejadze, Igor, degree supervisor.
Name University of Strathclyde. Department of Mathematics & Statistics.
Thesis note Thesis Ph. D. University of Strathclyde 2018 T15179

Powered by Digitool Contact us Electronic Library Services Library Home